

Documentation of Initial Hazard Potential Classification Assessment

Bottom Ash Pond Baldwin Energy Complex Randolph County, Illinois

Stantec Consulting Services Inc. Design with community in mind www.stantec.com Prepared for: Dynegy

October 12, 2016

Table of Contents

Section

Exec	utive Su	Jmmary	. 1
1.	Introc 1.1. 1.2.	Juction Background Location	.2 .2 .2
2.	Sourc	e Data	. 2
3.	Poter 3.1. 3.2. 3.3. 3.4. 3.5.	tial Failure ScenariosFacility DescriptionFailure Scenarios3.2.1.Scenario A – Bottom Ash Pond Western Failure3.2.2.Scenario B – Tertiary Pond Southwestern FailureBreach Hydrograph DevelopmentHydraulic Model Development3.4.1.Hydraulic ParametersBreach Modeling Results3.5.1.Breach Pathways	3 .3 .4 .4 .5 .5 .6 .6 .6
4.	Haza	rd Classification	. 6
5.	Refer	ence	. 7

List of Appendixes

Appendix A Site Overview Figure

Appendix B Breach Parameters

Executive Summary

This report documents the hazard potential classification assessment for the Bottom Ash Pond at the Baldwin Energy Complex as required per the CCR Rule in 40 C.F.R. § 257.73(a)(2). The applicable hazard potential classifications are defined in 40 C.F.R. § 257.53 as follows:

(1) <u>High hazard potential CCR surface impoundment</u> means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.

(2) <u>Significant hazard potential CCR surface impoundment</u> means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

(3) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.

Based on these definitions and the analysis herein, the Bottom Ash Pond should be classified as a <u>Significant Hazard Potential</u> CCR surface impoundment.

This report contains supporting documentation for the hazard potential classification assessment. The hazard potential classification for the Bottom Ash Pond was determined by a breach analysis conducted by Stantec in September, 2016.

1. Introduction

1.1. Background

The CCR Rule was published in the Federal Register on April 17, 2015. The Rule requires that a hazard potential classification assessment be performed for existing CCR surface impoundments that are not incised. A previously completed assessment may be used in lieu of the initial assessment provided the previous hazard assessment was completed no earlier than April 17, 2013. The applicable hazard potential classifications are defined in the CCR Rule 40 C.F.R. § 257.53 as follows:

<u>High Hazard Potential CCR surface impoundment</u> means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.

<u>Significant Hazard Potential CCR surface impoundment</u> means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

Low Hazard Potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.

Dynegy has contracted Stantec Consulting Services Inc. (Stantec) to prepare hazard potential classification assessments for selected impoundments¹.

It was determined that there was no existing available hazard potential classification assessment documentation for the Bottom Ash Pond.

1.2. Location

Baldwin Energy Complex is located along the east bank of the Kaskaskia River and northwest of Baldwin, Illinois in Randolph County. The station is located on the north side of Illinois Route 154 (Myrtle Street), the east side of Conservation Road, and the west side of 1st Street. The station's address is 10901 Baldwin Road, Baldwin, IL 62217. A site overview figure is included in Appendix A.

2. Source Data

The following information was used to perform a hazard assessment for the Bottom Ash Pond:

¹ Dynegy Administrative Services Company (Dynegy) contracted Stantec on behalf of the Baldwin Energy Complex owner, Dynegy Midwest Generation, LLC. Thus, Dynegy is referenced in this report.

- Aerial Imagery (USDA National Aerial Imagery Program 2015)
- Topographic survey information, existing conditions (Weaver Consultants Group for Dynegy, December 2015 1 foot contour data and planimetrics)
- Final Report Round 10 Dam Assessment Dynegy Midwest Generation, LLC Baldwin Energy Complex Primary Fly Ash Pond, Secondary Fly Ash Pond, Secondary Pond, Intermediate Pond, Final Pond Baldwin, Illinois, December 21, 2012
- Topographic information, pre-existing conditions (Illinois Power Company, 1981- 4 foot contours), Topographic Plan, Baldwin Power Plant Ash Storage Area
- Topographic information, Randolph County, Illinois (Illinois State Geological Survey County LiDAR Dataset, March/April 2012 2-foot contour interval)

3. Potential Failure Scenarios

3.1. Facility Description

The Bottom Ash Pond is located upstream of two non-CCR impoundments, the Secondary Pond and the Tertiary Pond. Pertinent geometric details for each pond were derived from the Final Report Round 10 Dam Assessment Dynegy Midwest Generation, LLC – Baldwin Energy Complex. Pertinent geometric details and other information are listed below.

• Bottom Ash Pond:

0	CCR Surface Impoundment –	Yes
0	Dam Crest Elevation –	417.6 Feet

- CCR Storage Yes
- Secondary Pond:
 - CCR Surface Impoundment No
 - Normal Pool Elevation 396.0 Feet
 - o Open Channel Spillway Elev 400.0 Feet
 - Dam Crest Elevation 402.0 Feet
 - Surface Area 19.0 Acres
 - Pool Area –
 18.5 Acres
 - Storage, Top of Dam 190 Acre-Feet
 - Spillway 50 foot wide open channel
- Tertiary Pond:

0	CCR Surface Impoundment –	No
0	Normal Pool Elevation –	393.0 Feet
0	Open Channel Spillway Elev –	394.3 Feet
0	Dam Crest Elevation –	398.0 Feet
0	Surface Area –	4.2 Acres
0	Pool Area –	4.0 Acres
0	Storage, Top of Dam –	110 Acre-Feet
0	Spillway –	90 foot wide open channel

3.2. Failure Scenarios

Free water volume is defined as the storage volume available between the crest elevation and the existing surface as defined in the 2015 survey. For the purpose of this evaluation all ponds were conservatively assumed to be storing water to the crest elevation. Solids volumes used in the analysis include volume of the ponds earthen embankments and in-place waste derived by comparing the 2015 survey of the impoundment to 1981 drawings of the area.

Two breach scenarios, Scenario A and B, were developed and analyzed. Breach hydrographs were developed utilizing the US Army Corps of Engineers (USACE) Hydrologic Engineering Centers Hydrologic Modeling System (HEC-HMS) version 4.0 (Reference 2). The hydrographs were routed downstream using the two dimensional capabilities of USACE Hydrologic Engineering Center's River Analysis System (HEC-RAS) version 5.0.1 (Reference 12).

Unless otherwise noted, all elevations herein are referenced to NAVD 88.

3.2.1. Scenario A – Bottom Ash Pond Western Failure

Scenario A assumed an overtopping breach initiated along the west face of the Bottom Ash Pond. The bottom of the breach was assumed at 403.0 feet. The volume of the breach was assumed as the free water volume of the pond. Due to the consistency of the bottom ash present within the Bottom Ash Pond and the location of the ash relative to the embankment, it was assumed that negligible solids volume contributed to this breach. Discharge consisting of the free water volume would flow to the Secondary Pond.

3.2.2. Scenario B – Tertiary Pond Southwestern Failure

Scenario B assumed an overtopping breach initiated along the southwest face of the Tertiary pond as a result of a Bottom Ash Pond breach. The bottom of the breach was assumed at 376.0 feet. The volume of the breach was assumed as the free water volume of the Secondary, Tertiary, and Bottom Ash Ponds. Due to the consistency of the bottom ash present within the Bottom Ash Pond, it was assumed that negligible solids volume contributed to this breach. Discharge would flow south and southwest towards the Kaskaskia River.

3.3. Breach Hydrograph Development

Breach hydrographs were developed using HEC-HMS version 4.0. The breach function of HEC-HMS requires input of estimated breach parameters and impounded volumes. Breach parameters were determined using empirical equations. Since there is uncertainty in predicting dam breach parameters, Stantec used several empirical equations and based final breach parameters on engineering judgment (References 3 - 11).

Table 1 summarizes the breach parameters used for this analysis. These values are based on the assumed failure conditions, height of breach, impoundment volume above breach, and width of the embankment. B_{avg} is the average width of a breach failure and t_f is the time for the breach to fully develop.

	Scenario A	Scenario B
Range of Breach Width Estimates (feet)	13.9 – 55.0	33.9 - 80.7
Range of Failure Time Estimates (hours)	0.1 – 0.6	0.1 – 0.6
Bavg (feet)	40.1	63.0
t _f (hours)	0.3	0.4

Table 1 Summary of Estimated Dam Breach Parameters

There is no contributing watershed upstream of the Bottom Ash Pond; therefore runoff calculations were not performed. Each of the ponds was conservatively assumed to have water present to the crest during a breach, as could occur during an extreme storm event with a clogged or blocked principal spillway.

Stage-storage curves for the Bottom Ash Pond, Secondary Pond and Tertiary Pond were developed based on historic topographic data and 2015 existing condition survey data. The stage-storage curves were unique for each of the scenarios modeled due to the volume assumptions for each.

3.4. Hydraulic Model Development

The breach hydrographs developed from HEC-HMS were routed downstream using the two dimensional capabilities of HEC-RAS version 5.0.1.

3.4.1. Hydraulic Parameters

Pertinent hydraulic parameters used during the hydraulic analysis are summarized below.

- The two-dimensional grid size used to route the hydrographs consisted of 40 foot cells, which effectively captured terrain features while simplifying the computational mesh.
- The minimum allowable breach flow ranged from 50 to 150 cubic feet per second (cfs) depending on the breach scenario.
- The Manning's 'n' was fixed at 0.060 for all 2D grid cells assuming this represented an average 'n' across the downstream inundation area. After reviewing model results it was determined spatial variation of Manning's 'n' would not result in a different peak inundation area.
- The Full Momentum equation set was utilized to model the breach scenarios because it resulted in a more realistic inundation extent than the Diffusion Wave equations.

3.5. Breach Modeling Results

Inundation limits for the breach Scenarios A and B were evaluated to determine the potential impacts on property and structures and the potential risk to human life.

Model results have been summarized below for selected areas of impact. The modeled breach scenarios indicate potential impacts to infrastructure believed to be off property from Baldwin Energy Complex property. Discharge to the Kaskaskia River is predicted in both scenarios.

3.5.1. Breach Pathways

Scenarios A and B would progress overland to the south and west. The breaches would affect Conservation Road. No occupied structures were impacted by the breach. Conservation Road is a secondary road with intermittent traffic. In accordance with Federal guidelines, loss of life is not considered probable for scenarios where persons are only temporarily in the potential inundation area (Reference 14).

4. Hazard Classification

Areas of potential impact were identified with results discussed in Section 3.5 of this report. Based on the results of modeling a breach of the Bottom Ash Pond, it is Stantec's opinion that such an event results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

Therefore, the Bottom Ash Pond fits the definition for a Significant hazard potential CCR surface impoundment (as defined in the CCR Rule §257.53) (Reference 1).

5. Reference

- 1. US Environmental Protection Agency. (2015). Disposal of Coal Combustion Residuals from Electric Utilities, 40 CFR § 257 and § 261 (effective April 17, 2015).
- US Army Corps of Engineers, Hydrologic Engineering Center, "Hydrologic Modeling System", HEC-HMS, Version 4.0 computer program, revised December 2013
- 3. Johnson, F.A and Illes, P. (1976). "A Classification of Dam Failures." Water Power Dam Construction, 28, 43-45.
- 4. Singh, Krishan P. and Snorrason, A. (1982). SWS Contract Report 288: Sensitivity of Outflow Peaks and Flood Stages to the Selection of Dam Breach Parameters and Simulation Models. Illinois Department of Energy and Natural Resources, State Water Survey Division.
- 5. Singh, Krishan P. and Snorrason, A. (1984). "Sensitivity of Outflow Peaks and Flood Stages to the Selection of Dam Breach Parameters and Simulation Models." *Journal of Hydrology*, 68, 295-310.
- 6. MacDonald, T. C., and Langridge-Monopolis, J. (1984). "Breaching Characteristics of Dam Failures." Journal of Hydraulic Engineering, 110 (5), 567-586.
- 7. Federal Energy Regulatory Commission (FERC). (1987). FERC 0119-1: Engineering Guidelines for the Evaluation of Hydropower Projects. Office of Hydropower Licensing.
- 8. Froehlich, D. C. (1987). "Embankment Dam Breach Parameters." Proceedings of the 1987 National Conference on Hydraulic Engineering, ASCE, Williamsburg Virginia, 570-575.
- 9. US Bureau of Reclamation (USBR). (1988). ACER Technical Memorandum No. 11: Downstream Hazard Classification Guidelines. Assistant Commissioner-Engineering and Research, Denver, Colorado, 57.
- 10. Von Thun, Lawrence J. and D. R. Gillette. (1990). Guidance on Breach Parameters, unpublished internal document, USBR, Denver, Colorado, 17. (Referenced in Wahl 1998).
- Froehlich, D. C. (1995). "Embankment Dam Breach Parameters Revisited." Proceedings of the 1995 ASCE Conference on Water Resources Engineering, ASCE, San Antonio, Texas, 887-891.
- 12. US Army Corps of Engineers, Hydrologic Engineering Center, "River Analysis System", HEC-RAS, Version 5.0.1 computer program, revised April 2016

- 13. Federal Emergency Management Association (FEMA). (2012). Assessing the Consequences of Dam Failure. A How-to-Guide.
- 14. Federal Emergency Management Association (FEMA). (2004). Hazard Potential Classification System for Dams.

Appendix A

Site Overview Figure

Notes

Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere
 Aerial Source: 2015 NAIP Imagery
 Impoundment Boundaries Provided by Client (Dated 9/9/2015)

Prepared by WSW on 2016-10-12 Technical Review by NS on 2016-10-12 Independent Review by MH on 2016-10-12 Client/Project Dynegy Baldwin Power Station Hazard Potential Classification Assessment Figure No. Appendix A Title

Site Overview Figure **Bottom Ash Pond System Baldwin Power Station**

Appendix B

Breach Parameters

Last Updated/By: 8-24-12 - Erman Caudill (Stantec) Refer to accompanying Equation Reference document.

Proie	ect Dat	ta (Op	otiona	al):
				•••

13 - Froehlich 1995

Project Data (Optional):							
Dar	n: <i>Baldwin Powe</i>	r Station					
Locatio	n: Randolph Cou	nty, Illinois					
Note	s: Scenario A - Bo	ottom Ash Pond					
Inputs:							
		Englisi	h Units	SI U	Inits	Data Conventio	on:
Height of dam	h _d	14.0	feet	4.3	meters		User Input Data
Height of breach	h _b	14.0	feet	4.3	meters		Default calculation,
Height/depth of water at breach	h _w	14.0	feet	4.3	meters		user can change.
Storage	S	69.8	ac-feet	86084.7	m ³		Calculated value.
Volume of water at breach	V _w	69.8	ac-feet	86084.7	m ³		
Width of dam at base	W_{base}	140.0	feet	42.7	meters		
Width of dam at crest	W _{crest}	40.0	feet	12.2	meters		
Estimated breach side slope	Z	1.0		1.0			
Baseflow	Q _{base}	0.0	ft ³ /s	0.00	m ³ /s		
Type of Failure		Overtopping					
Dam has core wall?		No					
Erosion resistant embankment?		No					
Average of Calculated Values:			_		_		
Breach width	B _{AVG}	40.1	feet	12.2	meters		
Breach bottom width	B _W	22.1	feet	6.7	meters		
Breach formation time	t _f	0.3	hours	0.31	hours		
Peak discharge	Q _p	11,181	ft ³ /s	316.6	m ³ /s		
Breach side slope	Z	1.29		1.29			
Volume of embankment eroded	V	50587.1	f + ³	1432 5	m ³		

Breach side slope	Z	1.29	Э	1.29)			
Volume of embankment eroded	V_{er}	50587.1	¹ ft ³	1432.5	³			
Volume of water discharged	V _o ,V _{out}	69.79	ac-feet	86084.7	′ m³			-
		Estimates	of Breach W	idth & Dime	ensions			
Source Equation	В	В	Z	V _{er}	Ko	\overline{W}	K _c	C _b
(See Attached Equation Reference)	(m)	(ft)		(m ³)		(m)		
1 - Johnson and Illes 1976	7.5	24.5						
2 - Singh and Snorrason 1982, 1984	14.9	49.0						
3 - MacDonald and Langridge-Monopolis 1984	4.2	13.9		496.9				
4 - MacDonald and Langridge-Monopolis 1984			0.500					
5 - FERC 1987	12.8	42.0						
6 - FERC 1987			0.625					
7 - Froehlich 1987	16.2	53.1			1.4			
8 - Froehlich 1987			2.917			27.4	1.0	
9 - USBR 1988	12.8	42.0						
10 - Von Thun and Gillette 1990			1.000					
11 - Von Thun and Gillette 1990	16.8	55.0						6.1
12 - Froehlich 1995	12.6	41.4			1.4			

1.400

U:\175605019\environmental\analysis\01_Baldwin\Hazard Classification\BreachParameters\Breach Parameter Calculations Baldwin_finalized_20160915.xlsx

Last Updated/By: 8-24-12 - Erman Caudill (Stantec) Refer to accompanying Equation Reference document.

Proiect	Data	(Optional):
		(o p c. o	,.

Location: Rando	olph County, Illinois		
Notes: Scena	irio A - Bottom Ash Pond		

Inputs:

		Englisl	h Units	SI U	nits	Data Conventio	on:
Height of dam	h _d	14.0	feet	4.3	meters		User Input Data
Height of breach	h _b	14.0	feet	4.3	meters		Default calculation,
Height/depth of water at breach	h _w	14.0	feet	4.3	meters		user can change.
Storage	S	69.8	ac-feet	86084.7	m ³		Calculated value.
Volume of water at breach	V _w	69.8	ac-feet	86084.7	m ³		
Width of dam at base	W_{base}	140.0	feet	42.7	meters		
Width of dam at crest	W _{crest}	40.0	feet	12.2	meters		
Estimated breach side slope	Z	1.0		1.0			
Baseflow	Q _{base}	0.0	ft ³ /s	0.00	m³/s		
Type of Failure		Overtopping					
Dam has core wall?		No					
Erosion resistant embankment?		No					
Average of Calculated Values:							
Breach width	B _{AVG}	40.1	feet	12.2	meters		
Breach bottom width	B _W	22.1	feet	6.7	meters		
Breach formation time	t _f	0.3	hours	0.31	hours		
Peak discharge	Q _p	11,181	ft ³ /s	316.6	m³/s		
Breach side slope	Z	1.29		1.29			
Volume of embankment eroded	V _{er}	50587.1	ft ³	1432.5	m ³		
Volume of water discharged	V _o ,V _{out}	69.79	ac-feet	86084.7	m ³		

Estimates of Failure Time				
Source Equation	t _f			
(See Attached Equation Reference)	(hours)			
14 - Singh and Snorrason 1982, 1984	0.625			
15 - MacDonald and Langridge-Monopolis 1984	0.252			
16 - FERC 1987	0.550			
17 - Froehlich 1987	0.390			
18 - USBR 1988	0.135			
19 - Von Thun and Gillette 1990				
20 - Von Thun and Gillette 1990				
21 - Von Thun and Gillette 1990	0.064			
22 - Von Thun and Gillette 1990	0.157			
23 - Froehlich 1995	0.284			

U:\175605019\environmental\analysis\01_Baldwin\Hazard Classification\BreachParameters\Breach Parameter Calculations Baldwin_finalized_20160915.xlsx

Last Updated/By: 8-24-12 - Erman Caudill (Stantec) Refer to accompanying Equation Reference document.

Project	Data	(Ontional)	•
riuject	Data	Optional	۰.

Project Data (Optional):						
Dar	m: <i>Baldwin Powe</i> l	r Station				
Locatio	n: Randolph Cour	nty, Illinois				
Note	es: Scenario A- Bo	ttom Ash Pond				
Inputs:						
•		Englisl	h Units	SI Units	Data Conventi	on:
Height of dam	h _d	14.0	feet	4.3 meters		User Input Data
Height of breach	h _b	14.0	feet	4.3 meters		Default calculation,
Height/depth of water at breach	h _w	14.0	feet	4.3 meters		user can change.
Storage	S	69.8	ac-feet	86084.7 m ³		Calculated value.
Volume of water at breach	V _w	69.8	ac-feet	86084.7 m ³		
Width of dam at base	W_{base}	140.0	feet	42.7 meters		
Width of dam at crest	W _{crest}	40.0	feet	12.2 meters		
Estimated breach side slope	Z	1.0		1.0		
Baseflow	Q _{base}	0.0	ft ³ /s	0.00 m ³ /s		
Type of Failure		Overtopping				
Dam has core wall?		No				

Average of Calculated Values:	
-------------------------------	--

Erosion resistant embankment?

Breach width	B _{AVG}	40.1	feet	12.2	meters
Breach bottom width	B _W	22.1	feet	6.7	meters
Breach formation time	t _f	0.3	hours	0.31	hours
Peak discharge	Q _p	11,181	ft ³ /s	316.6	m ³ /s
Breach side slope	Z	1.29		1.29	
Volume of embankment eroded	V _{er}	50587.1	ft ³	1432.5	m ³
Volume of water discharged	V _o ,V _{out}	69.79	ac-feet	86084.7	m ³

Estimates of Peak Discharge							
Source Equation	Q _p	\mathbf{Q}_{p}	η	k	d		
(See Attached Equation Reference)	(m ³ /s)	(ft ³ /s)					
24 - Kirkpatrick 1977	56.6	1,996					
25 - SCS 1981	243.3	8,584					
26 - Hagen 1982	327.3	11,551					
27 - USBR 1982	279.9	9,877					
28 - Singh and Snorrason 1984	208.1	7,344					
29 - Singh and Snorrason 1984	370.6	13,076					
30 - MacDonald and Langridge-Monopolis 1984	226.5	7,992					
31 - MacDonald and Langridge-Monopolis 1984	746.0	26,325					
32 - Costa 1985	729.3	25,735					
33 - Costa 1985	213.3	7,528					
34 - Costa 1985	740.1	26,117					
35 - Evans 1986	297.1	10,482					
36 - Froehlich 1995	104.8	3,699					
37 - Webby 1996	68.5	2,416					
38 - Walder and O'Connor 1997	138.2	4,876	429.5	55	3.20		

No

U:\175605019\environmental\analysis\01_Baldwin\Hazard Classification\BreachParameters\Breach Parameter Calculations Baldwin_finalized_20160915.xlsx

Last Updated/By: 8-24-12 - Erman Caudill (Stantec) Refer to accompanying Equation Reference document.

Proiect	Data	(Optional):
		(o p c. o	,.

Volume of water discharged

V_o,V_{out}

Project Data (Optional):		6					
Dam:	Baldwin Power	Station					
Location:	Scongrig B. Tor	ity, IIIIII0IS					
Notes:	Scenario B- Ter	τιατγ Ροπά					
Inputs:							
		English	Units	SI U	nits	Data Conventio	on:
Height of dam	h _d	22.0	feet	6.7	meters		User Input Data
Height of breach	h _b	22.0	feet	6.7	meters		Default calculation,
Height/depth of water at breach	h _w	22.0	feet	6.7	meters		user can change.
Storage	S	236.0	ac-feet	291101.7	m ³		Calculated value.
Volume of water at breach	V _w	236.0	ac-feet	291101.7	m ³		
Width of dam at base	W_{base}	140.0	feet	42.7	meters		
Width of dam at crest	W _{crest}	30.0	feet	9.1	meters		
Estimated breach side slope	Z	1.0		1.0			
Baseflow	Q _{base}	0.0	ft ³ /s	0.00	m³/s		
Type of Failure		Overtopping					
Dam has core wall?		No					
Erosion resistant embankment?		No					
Average of Calculated Values:							
Breach width	BAVG	63.0	feet	19.2	meters		
Breach bottom width	Bw	38.6	feet	11.8	meters		
Breach formation time	t _f	0.4	hours	0.36	hours		
Peak discharge	, Q _n	23,774	ft ³ /s	673.2	m ³ /s		
Breach side slope	Z	1.11	,.	1.11	,0		
Volume of embankment eroded	V _{er}	117819.0	ft ³	3336.4	m ³		

Estimates of Breach Width & Dimensions								
Source Equation	В	В	z	V _{er}	Ko	\overline{W}	K _c	C _b
(See Attached Equation Reference)	(m)	(ft)		(m ³)		(m)		
1 - Johnson and Illes 1976	11.7	38.5						
2 - Singh and Snorrason 1982, 1984	23.5	77.0						
3 - MacDonald and Langridge-Monopolis 1984	10.3	33.9		1795.2				
4 - MacDonald and Langridge-Monopolis 1984			0.500					
5 - FERC 1987	20.1	66.0						
6 - FERC 1987			0.625					
7 - Froehlich 1987	24.6	80.7			1.4			
8 - Froehlich 1987			2.012			25.9	1.0	
9 - USBR 1988	20.1	66.0						
10 - Von Thun and Gillette 1990			1.000					
11 - Von Thun and Gillette 1990	22.9	75.0						6.1
12 - Froehlich 1995	20.3	66.6			1.4			
13 - Froehlich 1995			1.400					

291101.7 m³

236.00 ac-feet

U:\175605019\environmental\analysis\01_Baldwin\Hazard Classification\BreachParameters\Breach Parameter Calculations Baldwin_finalized_20160921.xlsx

Last Updated/By: 8-24-12 - Erman Caudill (Stantec) Refer to accompanying Equation Reference document.

Location: Randolph Coul	nty, Illinois		
Notes: Scenario B - Te	ertiarv Pond		

Inputs:

		Englisl	h Units	SI Units	Data Convention:
Height of dam	h _d	22.0	feet	6.7 meters	User Input Data
Height of breach	h _b	22.0	feet	6.7 meters	Default calculation,
Height/depth of water at breach	h _w	22.0	feet	6.7 meters	user can change.
Storage	S	236.0	ac-feet	291101.7 m ³	Calculated value.
Volume of water at breach	V _w	236.0	ac-feet	291101.7 m ³	
Width of dam at base	W_{base}	140.0	feet	42.7 meters	
Width of dam at crest	W _{crest}	30.0	feet	9.1 meters	
Estimated breach side slope	Z	1.0		1.0	
Baseflow	Q _{base}	0.0	ft ³ /s	0.00 m ³ /s	
Type of Failure		Overtopping			
Dam has core wall?		No			
Erosion resistant embankment?		No			
Average of Calculated Values:					
Breach width	B _{AVG}	63.0	feet	19.2 meters	
Breach bottom width	Bw	38.6	feet	11.8 meters	
Breach formation time	t _f	0.4	hours	0.36 hours	
Peak discharge	Q _p	23,774	ft ³ /s	673.2 m ³ /s	
Breach side slope	Z	1.11		1.11	
Volume of embankment eroded	V _{er}	117819.0	ft ³	3336.4 m ³	
Volume of water discharged	V _o ,V _{out}	236.00	ac-feet	291101.7 m ³	

Estimates of Failure Time					
Source Equation	t _f				
(See Attached Equation Reference)	(hours)				
14 - Singh and Snorrason 1982, 1984	0.625				
15 - MacDonald and Langridge-Monopolis 1984	0.343				
16 - FERC 1987	0.550				
17 - Froehlich 1987	0.459				
18 - USBR 1988	0.211				
19 - Von Thun and Gillette 1990					
20 - Von Thun and Gillette 1990					
21 - Von Thun and Gillette 1990	0.101				
22 - Von Thun and Gillette 1990	0.219				
23 - Froehlich 1995	0.360				

U:\175605019\environmental\analysis\01_Baldwin\Hazard Classification\BreachParameters\Breach Parameter Calculations Baldwin_finalized_20160921.xlsx

 $V_{\rm w}$

Ζ

 $\mathsf{W}_{\mathsf{base}}$

 W_{crest}

 $\mathbf{Q}_{\mathsf{base}}$

Last Updated/By: 8-24-12 - Erman Caudill (Stantec) Refer to accompanying Equation Reference document.

Proiect	Data	(Optio	onal):
110,000	Dutu	vopus	Jinan,	

Baseflow Type of Failure

Volume of water at breach

Estimated breach side slope

Erosion resistant embankment?

Width of dam at base

Width of dam at crest

Dam has core wall?

[Dam: <i>Baldwin Power Station</i> Location: <i>Randolph County, Illinois</i>									
Loca										
N	Notes: Scenario B - Tertiary Pond									
Inputs:										
		English Units	SI Units	Data Convention:						
Height of dam	h _d	22.0 feet	6.7 meters	User Input Data						
Height of breach	h _b	22.0 feet	6.7 meters	Default calculation,						
Height/depth of water at breach	n h _w	22.0 feet	6.7 meters	user can change.						
Storage	S	236.0 ac-feet	291101.7 m ³	Calculated value.						

291101.7 m³

1.0

0.00 m³/s

42.7 meters

9.1 meters

Average of Calculated Values:					_
Breach width	B _{AVG}	63.0	feet	19.2	meters
Breach bottom width	B _W	38.6	feet	11.8	meters
Breach formation time	t _f	0.4	hours	0.36	hours
Peak discharge	Q _p	23,774	ft ³ /s	673.2	m³/s
Breach side slope	Z	1.11		1.11	
Volume of embankment eroded	V_{er}	117819.0	ft ³	3336.4	m³
Volume of water discharged	V _o ,V _{out}	236.00	ac-feet	291101.7	m ³

236.0 ac-feet

140.0 feet

30.0 feet

 $0.0 \text{ ft}^3/\text{s}$

1.0

Overtopping

No

No

Estimates of Peak Discharge									
Source Equation	\mathbf{Q}_{p}	\mathbf{Q}_{p}	η	k	d				
(See Attached Equation Reference)	(m ³ /s)	(ft ³ /s)							
24 - Kirkpatrick 1977	164.8	5,816							
25 - SCS 1981	561.3	19,808							
26 - Hagen 1982	754.6	26,626							
27 - USBR 1982	645.9	22,791							
28 - Singh and Snorrason 1984	489.0	17,255							
29 - Singh and Snorrason 1984	657.0	23,183							
30 - MacDonald and Langridge-Monopolis 1984	450.7	15,906							
31 - MacDonald and Langridge-Monopolis 1984	1482.2	52,302							
32 - Costa 1985	1460.5	51,537							
33 - Costa 1985	430.2	15,182							
34 - Costa 1985	1543.4	54,463							
35 - Evans 1986	566.6	19,994							
36 - Froehlich 1995	263.0	9,282							
37 - Webby 1996	201.6	7,114							
38 - Walder and O'Connor 1997	427.7	15,093	298.5	55	5.03				

U:\175605019\environmental\analysis\01_Baldwin\Hazard Classification\BreachParameters\Breach Parameter Calculations Baldwin_finalized_20160921.xlsx

Last Updated/By: 8-24-12 – Erman Caudill (Stantec)

Assumptions:

- Equations here were extracted from the USBR Report "Prediction of Embankment Dam Breach Parameters" and the Journal of Hydraulic Engineering article "Uncertainty of Predictions of Embankment Dam Breach Parameters" by the same author (Tony L. Wahl, USBR). Citation for that reference is included below, but recursive references have been omitted.
- All earthen embankments.
- Measurements are in SI units (meters, m³/s, hours) unless otherwise noted. Spreadsheet is set up to do the English-SI input conversions, then convert answers back to English units.

Input Parameters, Constants, and Variables:

- h_d = height of dam: input
- h_b = height of breach: input, generally = h_d
- h_w = height (depth) of water at failure above breach bottom: input
- S = storage: input parameter
- V_w = volume of water above breach invert at time of breach: input, generally = S
- W = Embankment width: input
- Z = breach opening side slope: input or calculated

g = acceleration of gravity = $9.8 \text{ m/s}^2 = 127,008,000 \text{ m/hr}^2$

B = average breach width: calculated (see below)

 B_W = breach bottom width: calculated using B, h_b , and Z (see equation 39)

t_f = breach formation time, hours: calculated (see below)

Q_p = peak breach outflow: calculated (see below)

Z = breach opening side slope: input or calculated (see below)

V_{er} = volume of embankment material eroded: generally calculated (see Equation 40)

V_o,V_{out} = volume of water discharged: calculated = S + inflow during breach

Breach Width & Dimension Equations:

Johnson and Illes 1976

 $(1) \qquad 0.5h_d \le B \le 3h_d$

Singh and Snorrason 1982, 1984

 $(2) \qquad 2h_d \le B \le 5h_d$

MacDonald and Langridge-Monopolis 1984

- (3) $V_{er} = 0.0261 (V_{out} h_w)^{0.769}$
- (4) Z = 1H:2V

FERC 1987

(5) $2h_d \le B \le 4h_d$ (6) $0.25 \le Z \le 1.0$

Froehlich 1987

$$\overline{B^*} = \frac{\overline{B}}{h} = 0.47 K_o (S^*)^{0.25}$$
$$S^* = \frac{S}{h_b{}^3}$$

Equations, Procedures, and Notes

Last Updated/By: 8-24-12 – Erman Caudill (Stantec)

(7)
$$\overline{B} = 0.47h_b K_o \left(\frac{S}{h_b^3}\right)^{0.25} K_o = 1.4 \text{ overtopping; } 1.0 \text{ otherwise}$$

$$Z = 0.75 K_c (h_w^*)^{1.57} (\overline{W^*})^{0.73}$$

$$h_w^* = \frac{h_w}{h_b}$$

$$(\overline{W^*}) = \frac{\overline{W}}{h} = \frac{W_{crest} + W_{bottom}}{2h}$$
(8)
$$Z = 0.75 K_c \left(\frac{h_w}{h_b}\right)^{1.57} \left(\frac{\overline{W}}{h_b}\right)^{0.73} K_c = 0.6 \text{ with corewall; } 1.0 \text{ without a corewall}$$

USBR 1988

 $(9) \qquad B = 3h_w$

Von Thun and Gillette 1990

(10)
$$Z = 1H:1V$$

(11) $\overline{B} = 2.5h_w + C$
 $C_b = f(reservoir size, m^3) = \begin{cases} Size & C_b \\ < 1.23x10^6 & 6.1 \\ 1.23x10^6 - 6.17x10^6 & 18.3 \\ 6.17x10^6 - 1.23x10^7 & 42.7 \\ > 1.23x10^7 & 54.9 \end{cases}$

Froehlich 1995

(12) $\overline{B} = 0.1803 K_o V_w^{0.32} h_b^{0.19}$ Ko = 1.4 overtopping; 1.0 otherwise (13) Z = 1.4 for overtopping, 0.9 otherwise

Failure Time Equations:

 $\begin{array}{ll} \mbox{Singh and Snorrason 1982, 1984} \\ (14) & 0.25 \mbox{ hr } \le t_f \le 1.0 \mbox{ hr} \end{array}$

MacDonald and Langridge-Monopolis 1984 (15) $t_f = 0.0179(V_{er})^{0.364}$

FERC 1987

(16) $0.10 \text{ hr } \le t_f \le 1.0 \text{ hr}$

Froehlich 1987 (t_f* equation was corrected from the report)

(17)

$$S^{*} = \frac{S}{h_{b}^{3}}$$

$$t_{f}^{*} = 79(S^{*})^{0.47} = 79\left(\frac{S}{h_{b}^{3}}\right)^{0.47}$$

$$t_{f}^{*} = t_{f}\sqrt{\frac{g}{h}}$$

$$t_{f} = \frac{79\left(\frac{S}{h_{b}^{3}}\right)^{0.47}}{\sqrt{\frac{g}{h_{b}}}}$$

USBR 1988

(18)
$$t_f = 0.011B$$

Equations, Procedures, and Notes

Last Updated/By: 8-24-12 – Erman Caudill (Stantec)

Von Thun and Gillette 1990 **Erosion Resistant** (19) $t_f = 0.020h_w + 0.25$ (20) $t_f = \frac{\overline{B}}{4h_w}$ **Highly Erodible** (21) $t_f = 0.015h_w$ $t_f = \frac{\overline{B}}{4h_w + 61.0}$ (22)Froehlich 1995 $t_f = 0.00254 V_w^{0.53} h_b^{(-0.90)}$ (23) **Peak Flow Equations:** Kirkpatrick 1977 $Q_{\rm p} = 1.268(h_{\rm w} + 0.3)^{2.5}$ (24) SCS 1981 $Q_p = 16.6(h_w)^{1.85}$ (25)Hagen 1982 $Q_p = 0.54(S \times h_d)^{0.5}$ (26) USBR 1982 $Q_p = 19.1(h_w)^{1.85}$ (27) Singh and Snorrason 1984 $Q_p = 13.4(h_d)^{1.89}$ (28) $Q_p = 1.776(S)^{0.47}$ (29) MacDonald and Langridge-Monopolis 1984 $Q_p = 1.154(V_w h_w)^{0.412}$ (30) $Q_p = 3.85(V_w h_w)^{0.411}$ (31) Costa 1985 (32) $Q_p = 1.122(S)^{0.57}$ (33) $Q_p = 0.981(S \times h_d)^{0.42}$ $Q_p = 2.634(S \times h_d)^{0.44}$ (34) Evans 1986 $Q_{\rm p} = 0.72 (V_{\rm W})^{0.53}$ (35) Froehlich 1995 $Q_p = 0.607 V_w^{0.295} h_w^{1.24}$ (36) Webby 1996 (37) $Q_p = 0.0443g^{0.5}V_w^{0.367}h_w^{1.40}$

Equations, Procedures, and Notes

Last Updated/By: 8-24-12 – Erman Caudill (Stantec)

Walder and O'Connor 1997

$$\eta = \frac{kV_o}{g^{0.5}d^{3.5}}$$

k = vertical erosion rate = 10 m/hr - 100 m/hrd = 50-100% of dam height

$$(38) \qquad Q_{p} = \begin{cases} 1.51(g^{0.5}d^{2.5})^{0.06}\left(\frac{kV_{0}}{d}\right)^{0.94} & \eta < \sim 0.6 \\ \\ 1.94g^{0.5}d^{2.5}\left(\frac{h_{d}}{d}\right)^{0.75} & \eta \gg 1 \end{cases}$$

Other Equations:

Breach Bottom Width

$$(39) \qquad B_W = B - h_b Z$$

Embankment Volume

(40)
$$V_{er} = \left(B_w h_b + Z h_b^2\right) \left(\frac{W_{crest} + W_{base}}{2}\right) = (B h_b) \left(\frac{W_{crest} + W_{base}}{2}\right)$$
$$B = \frac{V_{er}}{h_b \left(\frac{W_{crest} + W_{base}}{2}\right)}$$

References:

U.S. Department of the Interior, Bureau of Reclamation, Dam Safety Office. July 1998. "Prediction of Embankment Dam Breach Parameters, A Literature Review and Needs Assessment, DSO-98-004, Dam Safety Research Report", Tony L. Wahl, Water Resources Research Laboratory. 67 pp.

"Uncertainty of Predictions of Embankment Dam Breach Parameters", Tony L. Wahl. Journal of Hydraulic Engineering, Vol. 130, No. 5, May 1, 2004. 9 pp.

DAM BREACH EQUATIONS

DERIVATIONS NOT SHOWN

Designed by:

Checked by:

